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Abstract. We present a framework for automatically decomposing (“block-modeling”) the functional
classes of agents within a complex network. These classes are represented by the nodes of an image graph
(“block model”) depicting the main patterns of connectivity and thus functional roles in the network. Using
a first principles approach, we derive a measure for the fit of a network to any given image graph allowing
objective hypothesis testing. From the properties of an optimal fit, we derive how to find the best fitting
image graph directly from the network and present a criterion to avoid overfitting. The method can handle
both two-mode and one-mode data, directed and undirected as well as weighted networks and allows for
different types of links to be dealt with simultaneously. It is non-parametric and computationally efficient.
The concepts of structural equivalence and modularity are found as special cases of our approach. We
apply our method to the world trade network and analyze the roles individual countries play in the global
economy.

PACS. 89.75.Fb Structures and organization in complex systems – 89.75.Hc Networks and genealogical
trees – 89.65.Gh Economics; econophysics, financial markets, business and management – 89.65.Ef Social
organizations; anthropology

1 Introduction

The analysis of the structural and statistical properties of
complex networks is one of the major foci of complex sys-
tems science at the moment. In the context of social net-
works, the idea that the pattern of connectivity is related
to the function of an agent in the network is known as
playing a “role” or assuming a “position” [1,2]. Complex
systems science has endorsed this idea. By investigating
data from a wide range of sources encompassing the life
sciences, ecology, information and social sciences as well as
economics, researchers have shown that this intimate re-
lation between topology and function indeed exists [3–6].
Hence, understanding the topology of a network is a first
step in understanding the function and eventually the dy-
namics of any network.

Of particular interest in recent years has been the pos-
sible decomposition of networks into largely independent
sub-parts called “communities” [7]. As a community, one
generally understands a group of nodes that is densely
connected internally but sparsely connected externally. To
sociologists the concept of community is known as “co-
hesive subgroup” [2], but the recent advancements have
generalized its applicability much beyond sociology [8–12].
However, the sociological concept of roles in networks is
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Fig. 1. Example network illustrating structural and regular
equivalence. Nodes A and B have the same neighbors and are
thus structurally equivalent and regularly equivalent. Nodes C
though F form four different classes of structural equivalence
but can be grouped into only two classes of regular equivalence
as shown in the image graph or role model on the right.

much wider than mere cohesiveness as it specifically fo-
cuses on the inter-dependencies between groups of nodes.
Community structure, emphasizing the absence of depen-
dencies between groups of nodes is only one special case.

The nodes in a network may be grouped into equiv-
alence classes according to the role they play. Two
basic concepts have been developed to formalize the
assignments of roles individuals play in social networks:
structural and regular equivalence. Both are illustrated in
Figure 1. Two nodes are called structurally equivalent if
they have the exact same neighbors [13]. In Figure 1, only
nodes A and B are structurally equivalent while all other
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nodes are structurally equivalent only to themselves. To
relax this very strict criterion, regular equivalence was in-
troduced [14,15]. Two nodes are regularly equivalent if
they are connected in the same way to equivalent others.
Clearly, all nodes which are structurally equivalent must
also be regularly equivalent, but not vice versa. The seem-
ingly circular definition of regular equivalence is most eas-
ily understood in the following way: every class of reg-
ularly equivalent nodes is represented by a single node
in an “image graph”. The nodes in the image graph are
connected (disconnected), if connections between nodes
in the respective classes exist (are absent) in the original
network. In Figure 1, nodes A and B, C and D as well
as E and F form three classes of regular equivalence. If
the network in Figure 1 represents the trade interactions
on a market, we may interpret these 3 classes as produc-
ers, retailers and consumers, respectively. Producers sell
to retailers, while retailers may sell to other retailers or
consumers, which in turn only buy from retailers. The im-
age graph (also “block-” or “role model”) hence gives a
bird’s-eye view of the network by concentrating on the
roles, i.e. the functions, only. Note that no two nodes in
the image graph may be structurally equivalent, otherwise
the image graph is redundant.

Regular equivalence, though a looser concept than
structural equivalence, is still very strict as it requires the
nodes to play their roles exactly, i.e. each node must have
at least one of the connections required and may not have
any connection forbidden by the role model. In Figure 1,
the link between D and E may be removed without chang-
ing the image graph, but an additional link from A to E
would change the role model completely. Clearly, this is
unsatisfactory in situations where the data is noisy or only
approximate role models are desired for a very large data
set.

Instead of requiring exact fit of every single node to the
role model, we require the fit of the network as a whole to
the role model to be as good as possible, such that perfect
fit corresponds again to regular or structural equivalence,
as set by an appropriate error function.

We approach the problem in the following way: first,
we assume a given image graph and assignment of roles
to nodes. We derive a quality function QB as an objective
measure of fit between the image and the network under
this assignment of roles. We then consider that assign-
ment of roles which maximizes this quality function. The
higher QB, the better the given image graph can describe
the connection structure of the original network. The con-
cepts of modularity introduced by Newman [17] and struc-
tural equivalence are found as special cases for particular
image graphs. We then consider the general properties of
an assignment of nodes into roles which yields the highest
QB across all possible given image graphs with a certain
number of roles. This suggests a transformation of the
quality function enabling us to find this optimal assign-
ment of nodes into roles directly from the network and
read off the image graph afterwards. The block models
we find are characterized by a maximum deviation (both,
positive and negative) of the link weight that meets in

a given block from the expectations based on the paired
row/column totals that meet in this block. Further, we
give a criterion for the selection of the optimal number
of roles to avoid over-fitting. Finally, we will apply this
technique to detect the roles individual countries play in
the global trade network.

2 Fitting a network to a given image graph

Suppose we are given a hypothetical image graph with
q roles in form of its q × q adjacency matrix Brs. For
any assignment of roles σi ∈ {1, .., q} to the nodes i of
a network with N nodes and M edges represented by its
adjacency matrix Aij , we measure the quality of the fit to
the image graph as:

QB({σ}) =

1
M

⎛
⎝∑

i�=j

aijAijBσiσj + bij(1 − Aij)(1 − Bσiσj )

⎞
⎠ . (1)

That is, we reward the matching to the image graph of an
edge (Aij = 1) going from node i to node j with some con-
tribution aij , if links going from nodes of type σi to nodes
of type σj are allowed, i.e. Bσiσj = 1. Also, we reward
a missing edge (Aij = 0) matching one the image graph
with some contribution bij , if such an edges is forbidden
(Bσiσj = 0). When the rewards allow missing edges in the
network matching to edges in the image graph, the opti-
mal fit will recover regular equivalence. We do not do so
in this paper, and reserve that analysis for a comparative
treatment of these two options.

A configuration {σ} of roles σi which maximizes (1)
constitutes an optimal fit of the network to a given image
graph. We can further simplify (1) to

QB({σ}) =
1
M

∑
i�=j

((aij + bij)Aij − bij)Bσiσj , (2)

droppeding all terms not depending on {σ}.
As an example, Figure 2 shows a few adjacency matri-

ces of undirected networks and the corresponding image
graphs with two and three roles. The adjacency matri-
ces are ordered such that rows (columns) corresponding
to nodes in the same role are next to each other. Due
to the similar connection pattern of nodes of the same
role, blocks of high link density appear in the adjacency
matrices. These make the term “block modeling” [16] for
grouping nodes according to similar connection patterns
intuitive and we will differentiate between a block model
as the adjacency matrix in a particular order on one side
and its image graph on the other. Note that only a) and
d) represent community structures, but the spectrum of
possible topologies is much, much wider.

By introducing the abbreviations ers =
1/M

∑
i�=j(aij + bij)Aijδσi,rδσj ,s and [ers] =

1/M
∑

i�=j bijδσi,rδσj ,s we can write (2) in a very
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Fig. 2. Example adjacency matrices and corresponding image graphs with two and three roles. Nodes with the same pattern
of connectivity appear as blocks in the adjacency matrix and are represented by a single node in the image graph. Background
shading of matrices reflects link density in blocks. We show only those three role models which are not isomorphic and which
cannot be reduced to a block model of two roles only. The two-role-models can be understood as a) modular structure, where
nodes connect primarily to nodes of the same role, b) bipartition, with connections primarily between nodes of different type
and c) a core-periphery structure with nodes of type A (the core) connecting preferentially among themselves and to nodes of
type B (the periphery). The three role models can be seen as combinations of these three basic structures plus the possibility
of having intermediates.

convenient form:

QB({σ}) =
q∑

r,s

(ers − [ers])Brs (3)

= −
q∑

r,s

(ers − [ers])(1 − Brs) + C. (4)

Here, the sums run over role indices instead of node in-
dices and we have a constant term C =

∑q
r,s(ers − [ers]).

Note the equivalence of counting matches/mismatches to
allowed links (Brs = 1) and forbidden links (Brs = 0).

Since generally there are not as many edges in a net-
work as there are missing ones, we’d like to balance the
contribution of present and absent edges aij and bij to
QB. We want

∑
i�=j aijAij =

∑
i�=j bij(1 − Aij), which

also makes the constant C in the above equation zero. To
achieve this, a sensible choice is aij = 1−pij and bij = pij

provided that
∑

i�=j Aij =
∑

i�=j pij . Other choices are
possible [18,19]. Then one may interpret pij as the proba-
bility for the nodes i and j being connected. This choice of
aij and bij allows to interpret ers as the fraction of edges
connecting nodes in groups r and s and [ers] as the expec-
tated fraction of edges running from r to s. Our choice of
weights aims at optimizing for structural equivalence for
the present analysis. Using other settings of aij and bij

we can tune the quality function to optimize for regular
equivalence.

The simplest choice for pij is pij = p which is a
suitable choice for undirected networks with a Poisso-
nian degree distribution. A more refined choice adequate
to a broader range of degree distributions and especially
for directed networks is pij = kout

i kin
j /M which makes

[ers] = Kout
r Kin

s /M2, where k
in/out
i is the in/out-degree

of node i. The sum of in/out-degrees of all nodes in role s

is denoted by K
in/out
s . Also this has the nice property

that [ers] = aras with as =
∑

r ers, i.e. the expecta-
tion value is calculated as the product of the marginals
of ers. For the remainder of this paper, we will use this
choice of weights. Note that using an image graph with
self-links only (Brs = δrs) with these weights, we recover
the Newman modularity [17].

With this quality function at hand, we can find the as-
signment of roles to nodes simply by optimizing it in order
to maximize QB. The function (2) is computationally easy
to implement for a given image graph. The difference in
QB for a change of node i from role α to role φ is:

∆QB(σi = α → φ) =
1
M

∑
s

(Bφs − Bαs)(kout
i→s − [kout

i→s])

+
1
M

∑
r

(Brφ − Brα)(kin
r→i − [kin

r→i]).

Here kout
i→s =

∑
j �=i(aij + bij)Aijδσj ,s denotes the num-

ber of links node i has to nodes in role s and [kout
i→s] =∑

j �=i bijδσj ,s denotes the respective expectation value. For
undirected networks, the two contributions of incoming
and outgoing links are of course equal. Hence, a local up-
dating scheme needs to assess the ki neighbors of node i
and then to determine which of the q roles is best for this
node, which takes O(q2) operations. Thus a local update
needs O(〈k〉 + q2) operations and can be implemented ef-
ficiently on sparse graphs as long as the number of roles
is much smaller than the number of nodes in the network.
Local search heuristics capable of escaping local optima
such as simulated annealing can then be used to find the
desired globally optimal assignment of roles to nodes. Nat-
urally, the optimal assignment of roles to nodes is char-
acterized by ∆Q(σi = α → φ �= α) ≤ 0, i.e. every node
assumes its best-fitting role, provided all other nodes do
not change.
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So far, we have dealt with directed, unweighed one
mode networks. Weighted networks [21] can be dealt with
by considering a weighted adjacency matrix and setting
ki =

∑
j �=i Aij . Two mode data [20] can be seen as directed

networks with one part of the nodes having only outgoing
links and the other part of the nodes having only incoming
links.

3 The optimal fit between network and image
graph

Let us first consider the maximum achievable value of QB

for any image graph with any number of roles. From (2) we
see that every allowed edge (Aij = 1) in the network con-
tributes aij and every missing edge (Aij = 0) that would
be allowed contributes −bij to QB. The maximum of QB

is thus achieved when every edge in the network is allowed
and there are no missing edges that would be allowed. The
minimal image graph Brs which can achieve this is sim-
ply that which depicts the connectivities of the classes
of structural equivalence in the network. This makes the
maximum sensible number of roles in the image graph
qmax the number of structural equivalence classes. We can
calculate QB

max even without knowledge of the structural
equivalence classes simply by replacing Brs by Aij in (2)

Qmax =
1
M

∑
ij

aijAij =
1
M

∑
i�=j

(
1 − kout

i kin
j

M

)
Aij , (5)

where we have set aij = 1 − pij with our preferred form
of pij .

Let us now consider the properties of an image graph
with q roles and a corresponding assignment of roles
to nodes which achieve the highest QB across all im-
age graphs with the same number of roles. From (3) we
see immediately that QB is maximal when every addend
(ers − [ers])Brs is maximized. If Brs = 1 then (ers − [ers])
cannot be negative. Likewise, we see from (4) that if
Brs = 0 then (ers − [ers]) cannot be positive. This means
that for the best fitting image graph, we have more links
than expected between nodes in roles connected in the
image graph. Further, we have less links than expected
between nodes in roles disconnected in the image graph.
These two observations are in fact equivalent due to the
equivalence of (3) and (4).

4 Deriving the best block model
from the data

A comparison of the optimal QB across all possible image
graphs is impractical as their number grows exponentially
fast with the number of roles q. Essentially all graphs with
q nodes (not counting isomorphisms) would need to be
considered. Following the discussion in the last section,
we will show how the best image graph can be found in a
single step.

Recall that the best possible fit of the network to an
image graph is characterized by (ers − [ers]) ≥ 0 for all
allowed links Brs = 1 and by (ers − [ers]) ≤ 0 for all
forbidden links Brs = 0. This suggests a simple way to
eliminate the need for a given image graph by considering
the following quality function

Q∗({σ}) =
1
2

q∑
r,s

‖ers − [ers]‖. (6)

The factor 1/2 enters to make the scores of QB and
Q∗ comparable. From the assignment of roles that max-
imizes (6), we can read off the image graph simply by
setting Brs = 1, if (ers − [ers]) > 0 and Brs = 0, if
(ers − [ers]) ≤ 0. The function (6) is steadily increasing
with the number of possible roles q until it reaches its
maximum value Qmax when q equals the number of struc-
tural equivalence classes in the network. For q roles, this
allows to compare Q∗(q)/Qmax for the actual data and a
randomized version and to use this comparison as a ba-
sis for the selection of the optimal number of roles in the
image graph in order to avoid over-fitting of the data.

A comparison of the image graphs and role assign-
ments found independently for different numbers of roles
then also allows for the detection of possibly hierarchical
or overlapping organization of the role structure in the
network.

5 Role decomposition of world trade patterns

As an example application we investigate a data set for
the year 2000 from the United Nations commodity trade
data base [22]. Independent research [24,23] has shown
that the 55 commodities that make up the bulk of world
trade, when factor analyzed, form five major groups, and
that commodities are highly correlated within each group.
They are differentiated by proportions of production with
extraction, capital-intensive or labor-intensive processing.
The five groups are a) food products and by-products,
b) simple extractive, c) sophisticated extractive, d) high
technology and heavy manufacture and e) low wage/light
manufacture. Representative for each of these groups, we
chose one commodity each and obtained 5 different net-
works of commodity trade. The five commodities are a)
meat and meat preparations, b) animal oil and fats, c)
paper, paperboard and articles of pulp, d) machinery and
e) footwear. The data set is based on the volumes of im-
port as reported by 112 countries to the UN in 2000. The
only pretreatment applied to the data was to take the log-
arithm of the trade volumes which preserves the relative
strength of trade volumes but reduces the effect that the
fit of high volume countries alone dominates the quality
of the role models.

Since the five different commodities had been found
to be largely independent [24] and also have different
overall volumes, we do not simply sum the volumes but
extend (6) in order to accommodate for different types
of links in the network. Instead of performing the same
analysis for the different commodities independently and
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trying to form a consensus a posteriori, we include the
different kinds of traded goods at the same time in the
model finding process. The quantity that we maximize is:

Q∗({σ}) =
1
2

∑
c

q∑
r,s

‖ec
rs − [ec

rs]‖. (7)

Here, the first sum runs over the different commodities
c and every country i is assigned exactly one role σi

from σi ∈ {1, ..., q} which it assumes in all block models.
Further, ec

rs is the fraction of the log of the total volume of
commodity c imported by countries in roles r from those
in role s. As before, [ec

rs] is the corresponding expecta-
tion value based on the marginals. Once an assignment of
roles to countries has been found that maximizes (7), we
can read off the five different image graphs Bc

rs directly
from the terms ec

rs − [ec
rs] as before. The different mod-

els can then be overlaid easily as the same countries are
assigned into the same roles for all of them. The compu-
tational effort for this multi commodity block modeling
is still moderate as it increases over that for the case of
one link type only by a factor of the number of different
commodities.

Before discussing the block models we obtain, we need
to determine the optimal number of roles. We calculate
Qc

max for each of the five commodities separately accord-
ing to (5). For different number of roles q, we then maxi-
mize (7) and find Q∗(q)/Qmax averaged over the five com-
modities. This is necessary since we can define Qmax only
for a single link type and (7) aims at constructing a con-
sensus model for all link types. This average value tells us
what fraction of the total link structure we mimic in our
image graph. As a random null model, we created random-
ized versions of the empirical data by rewiring the origi-
nal network but keeping the number of connections con-
stant for each node and link type. This holds the marginals
roughly constant but rewires the network topology. Then,
the same procedure as for the empirical data was used to
obtain Q∗(q)rnd/Qmax,rnd which is also averaged over sev-
eral realizations of the disorder. In the left part of Figure 3
we compare the values of Q∗(q)/Qmax for the empirical
data and the randomized data. While the randomized data
shows a linear increase with the number of roles from the
beginning, the empirical data shows a strong increase at
small numbers of roles and then also changes into a linear
regime. The right part of Figure 3 shows the difference in
the ratio Q∗(q)/Qmax of empirical and randomized data.
Though every block model from q = 2 to q = 112 has its
own merit, after all, the countries do all have individual-
ity, two points may be chosen as particularly meaningful:
either the number of roles at which we observe the tran-
sition to a linear increase in Q∗(q)/Qmax which happens
at q = 5 or the point at which we observe the largest dif-
ference to the randomized data at q = 9. An alternative
approach to select the optimal number of roles would be
to use the minimum description length of the block model
as suggested in reference [26].

An advantage of marginal density blockmodeling de-
veloped here is that as the number of roles increases, their
memberships may merge as well as split. Successive par-

titions are not always subdivisions forming hierarchical
clusters, although there is a strong tendency for that to
occur. The five rectangles enclosing pairs of roles in Fig-
ure 5 show where subdivisions tend to be hierarchical. In
each case, however, some other countries also join the new
sub-roles, as, for example, when the less developed periph-
ery of the two-role model splits into two sub-roles that are
also joined by some countries from the core.

Figure 4 shows the image graphs and block matrix
plots for five and nine roles. Note the progression of dif-
ferentiation as more and more roles are included. Already
at q = 5 we observe a structure that can be seen as a
coarse-grained version of the model with 9 roles, with the
models in between mediating the transition. Inspection of
Table 1 shows for all the block models that the progres-
sive refinements in Figure 4 induce a fair approximation
to a hierarchical clustering of roles. This is not required
by the model and rather than split as the number of roles
increases, memberships merge from different blocks about
8% of the time, including cases where two roles keep their
identity but contribute overlapping members to form a
third.

A pattern of geographical proximities appears in an
ordering of partitions that minimizes distances between
sets that are merged or split. This unique compact layout
of the splitting/merging diagram (comp. Fig. 5) is used
to order the partitions in Table 1. Countries in the same
group tend to be located in each other’s proximity. Geo-
graphical position is thus a strong factor determining the
structural equivalence roles among countries. One reason
is of course that geographical proximity means that such
countries have similar geographical conditions and hence
similar conditions for agriculture, mining etc. Another is
that geographically close countries often form localized
trade alliances.

Additional to geographic proximity, the second strik-
ing feature of these models, based on optimizing structural
equivalence, is that there exists considerable symmetry in
the way the world trade is organized. Symmetry of the
image graphs suggests that there are also regular equiv-
alences across regions that organize the role structures
across different regions [23]. Let us consider the q = 9
model. Thus, on one hand, there is the region around the
Pacific with the US, Canada and Japan (8) in a central
position, South America (9) as an out-group and South
East Asia (7) as a sub-center. On the other hand, we see
the core of the European Union (1) in an equally central
position as the US, Canada and Japan (8), however, with
Eastern Europe and the former Soviet Union (4) assum-
ing the position that South America (9) takes on across
the Atlantic. Scandinavia and some peripheral European
countries such as Ireland, Austria, Greece and also Turkey
(2) are for the core EU states (1) what South East Asia
(7) is for the North America and Japan (8). In the mid-
dle of all, we find the African and Middle Eastern coun-
tries (5), Polynesia (6) and a second group of peripheral
European countries (3) which are Greenland, Iceland, Por-
tugal, Andorra, Malta and Israel in approximately equal
positions.
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Fig. 3. Left: Average of Q∗(q)/Qmax over five commodities for the world trade network as a function of the number of roles
q in the block model. Red (×) denote the actual empirical data, blue (+) denote the results averaged over randomly rewired
versions of the empirical data as a null model. While the randomized data shows a linear increase of Q∗/Qmax with the number
of roles, the empirical data exibits a strong increase for smaller numbers of q and then also turns into a linear regime. Right:
Difference between Q∗/Qmax for the empirical data and the randomized data. At q = 5 we observe the transition to the linear
regime. At q = 9 the largest difference between empirical data and the random null model occurs capturing 60% of Qmax with
only 8% of the total number of structural equivalence classes needed to achieve this maximum.

Fig. 4. Consensus image graphs and block matrix plots for the 5 commodities studied at q = 5 and q = 9 roles. Note the high
symmetry of the image graphs. Triangle labels indicate commodity and direction of the flow of goods. Unlabeled links carry
all five commodities in both directions. Side and bottom bars encode the marginal fraction of import and export of the total
traded volume for each block in gray scale, respectively. Black dots indicate trade greater than expected from the marginals
for pairs of countries, white dots smaller than expected. Background shading of blocks corresponds to density of black dots in
block. See Table 1 for individual countries grouped in each block and text for details. The ordering of blocks in the matrices is
suggested by the proximity oder of the splitting diagram as depicted in Figure 5.
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Table 1. Assignment of countries in models with two to nine

roles. The horizontal lines separate the q = 9 different roles of

the most detailed block model from Figure 4. Note how the

blocks form an almost perfect hierarchy in the way that suc-

cessive blocks split apart although this is not required by the

algorithm. This is also shown by the splitting diagram in Fig-

ure 5 which further suggests the order of the groups of countries

in this table.
Group Label Country q=2 q=3 q=4 q=5 q=6 q=7 q=8 q=9

Belgium-Luxembourg 1 1 1 1 1 1 1 1
France 1 1 1 1 1 1 1 1
Germany 1 1 1 1 1 1 1 1
Italy 1 1 1 1 1 1 1 1

Core EU Netherlands 1 1 1 1 1 1 1 1
Spain 1 1 1 1 1 1 1 1
Switzerland 1 1 1 1 1 1 1 1
United Kingdom 1 1 1 1 1 1 1 1
Denmark 1 1 1 1 1 1 2 2
Sweden 1 1 1 1 1 1 2 2
Austria 1 1 2 2 2 2 2 2

1st Peri. EU Turkey 1 2 2 2 2 1 2 2
Greece 1 2 2 2 2 2 2 2
Norway 1 2 2 2 2 2 2 2
Finland 2 2 2 2 2 2 3 2
Ireland 2 2 2 2 2 2 2 2
Cyprus 2 2 2 2 2 2 2 2
Portugal 2 2 2 2 2 2 2 3
Andorra 2 2 2 2 2 2 3 3

2nd Peri. EU Iceland 2 2 2 2 2 2 3 3
Israel 2 2 2 2 2 2 3 3
Greenland 2 2 3 2 2 2 3 3
Malta 2 2 2 2 2 2 4 3
Russian Federation 1 1 2 2 2 2 2 4
Czech Rep. 1 2 2 2 2 2 2 4
Turkmenistan 1 2 2 2 2 2 3 4
Albania 2 2 2 2 2 2 3 4
Armenia 2 2 2 2 2 2 3 4
Azerbaijan 2 2 2 2 2 2 3 4
Belarus 2 2 2 2 2 2 3 4
Bulgaria 2 2 2 2 2 2 3 4
Estonia 2 2 2 2 2 2 3 4

East. Europe Georgia 2 2 2 2 2 2 3 4
Hungary 2 2 2 2 2 2 3 4
Iran 2 2 2 2 2 2 3 4
Kazakhstan 2 2 2 2 2 2 3 4
Latvia 2 2 2 2 2 2 3 4
Lithuania 2 2 2 2 2 2 3 4
Poland 2 2 2 2 2 2 3 4
Rep. of Moldova 2 2 2 2 2 2 3 4
Romania 2 2 2 2 2 2 3 4
Serbia and Montenegro 2 2 2 2 2 2 3 4
Slovakia 2 2 2 2 2 2 3 4
Tajikistan 2 2 2 2 2 2 3 4
Syria 2 2 2 2 2 3 4 4
Saudi Arabia 1 1 1 1 3 3 4 5
Algeria 2 2 2 2 2 3 4 5
Morocco 2 2 2 2 2 3 4 5
Tunisia 2 2 2 2 2 3 4 5
Bahrain 2 2 3 3 3 3 4 5
Comoros 2 2 3 3 3 3 4 5
Cote d’Ivoire 2 2 3 3 3 3 4 5
Ethiopia 2 2 3 3 3 3 4 5
Ghana 2 2 3 3 3 3 4 5

Africa, Mid. East Guinea 2 2 3 3 3 3 4 5
Jordan 2 2 3 3 3 3 4 5
Nigeria 2 2 3 3 3 3 4 5
Oman 2 2 3 3 3 3 4 5
Senegal 2 2 3 3 3 3 4 5
Togo 2 2 3 3 3 3 4 5
Burundi 2 3 3 3 3 3 4 5
Kenya 2 3 3 3 3 3 4 5
Mauritius 2 3 3 3 3 3 4 5
Pakistan 2 3 3 3 3 3 4 5
Uganda 2 3 3 3 3 3 4 5
China, Macao SAR 2 3 3 3 3 4 5 6
French Polynesia 2 3 3 3 3 4 5 6
Maldives 2 3 3 3 3 4 5 6
Nepal 2 3 3 3 3 4 5 6

Polynesia New Caledonia 2 3 3 3 3 4 5 6
New Zealand 2 3 3 3 3 4 5 6
Papua New Guinea 2 3 3 3 3 4 5 6
Philippines 2 3 3 3 3 4 5 6
Vanuatu 2 3 3 3 3 4 5 6
Malaysia 2 3 3 3 3 5 6 7
Indonesia 2 3 3 3 4 5 6 7
Singapore 2 3 3 3 4 5 6 7
South Africa 1 3 3 3 4 5 6 7

SE Asia Thailand 1 3 3 3 4 5 6 7
Australia 1 3 3 4 4 5 6 7
China 1 3 1 4 4 5 6 7
China, Hong Kong SAR 1 3 3 4 4 5 6 7
Rep. of Korea 1 3 3 4 4 5 6 7
Japan 1 3 3 4 5 6 7 8

North Am, Japan Canada 1 3 4 4 5 6 7 8
USA 1 3 4 4 5 6 7 8
Brazil 1 3 4 4 6 7 8 9
Argentina 1 3 4 5 6 7 8 9
Barbados 1 3 4 5 6 7 8 9
Honduras 1 3 4 5 6 7 8 9
Panama 1 3 4 5 6 7 8 9
Bolivia 2 3 4 5 6 7 8 9
Chile 2 3 4 5 6 7 8 9
Colombia 2 3 4 5 6 7 8 9
Costa Rica 2 3 4 5 6 7 8 9
Dominica 2 3 4 5 6 7 8 9
Ecuador 2 3 4 5 6 7 8 9

South Ameriac El Salvador 2 3 4 5 6 7 8 9
Guatemala 2 3 4 5 6 7 8 9
Jamaica 2 3 4 5 6 7 8 9
Mexico 2 3 4 5 6 7 8 9
Montserrat 2 3 4 5 6 7 8 9
Nicaragua 2 3 4 5 6 7 8 9
Paraguay 2 3 4 5 6 7 8 9
Peru 2 3 4 5 6 7 8 9
St Kitts and Nevis 2 3 4 5 6 7 8 9
St Lucia 2 3 4 5 6 7 8 9
St Vincent & Grnads. 2 3 4 5 6 7 8 9
Suriname 2 3 4 5 6 7 8 9
Trinidad and Tobago 2 3 4 5 6 7 8 9
Uruguay 2 3 4 5 6 7 8 9
Venezuela 2 3 4 5 6 7 8 9

Fig. 5. Splitting and merging diagram of the assortment of
countries into roles as the number of roles increases. The width
of the arrows is proportional to the number of countries that
pass from role to role as the number of classes in increased
by one. Rectangles indicate the major split on each level and
squares show new roles formed from overlap or merging. See
Table 1 for the individual countries in each role at each level.
The compact layout of this splitting/merging diagram show
how splits tend to distribute countries to smaller blocks that
are adjacent in the partition order. This suggested the com-
pact order of the blocks in Table 1 and Figure 4. The only
three exceptions to compactness are China’s realignment to
block 1 at level 3 and back to block 4 at level 4, and Saudi
Arabia’s realignment to block 3 at level 5. As already noted
in the matrix plots and image graphs, differentiation first hap-
pens around the Pacific and then in Europe, Africa and the
Middle East. Labels are CEU: Central Europe, EEU: Eastern
Europe, ME: Middle East, AF: Africa, NAF: Northern Africa,
SEA: South East Asia, Polyn: Polynesia, N+SAm: North and
South and Middle America, SAm: South and Middle America,
NAJ: North America and Japan, 1P EU: 1st periphery EU,
2nd Periphery EU.

Competing models for regular and structural equiv-
alence blockmodeling can be explored through other
methods sensitive to how different equivalences can be de-
fined by constraints that differ block by block, as in gener-
alized blockmodeling [16]. Our model can parsimoniously
evaluate at a global level, however, how regular and struc-
tural equivalence role models differ, simply by changing
our quality function. We reserve that comparison for a
future paper. It is also interesting to observe the grad-
ual refinement of the roles, for instance when concentrat-
ing on the core EU countries. For small numbers of roles,
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countries such as Denmark, Sweden, Austria and Norway
are grouped together with them, but with more roles avail-
able, they are moved into their own groups to merge with
countries such as Cyprus, Finland and Ireland which had
been in more peripheral positions from the start. Such
behavior can be interpreted as showing, with greater re-
finement in the role structure, the intermediary positions
between the clear role of the core EU states and the more
peripheral countries.

6 Conclusion

The proposed framework for block modeling is a density-
based measure but not, as in some earlier methods [2],
based on a notion of high/low densities within position-
to-position blocks compared to global densities. Rather, its
partitions are based on the marginal expectations from the
paired row-column positional totals that meet in a given
block, i.e. where links are concentrated. We thus take a
different approach than the parameter rich mixture model
approaches in references [25–30]. Our method allows the
use of weighted data sets of multiple link types and re-
sults from a generalization of proven sociological concepts
containing them as limiting cases.

As we showed for the cross sectional snapshot of the
United Nations commodity trade database recording trade
flows between countries on an annual basis, these parti-
tions obtained are valid and capable of producing new
insights and theories of role structure and dynamics.

The second distinctive and positive feature of density
generalized block modeling is that successive partitions
are not necessarily sequential hierarchical subclusters but
may be overlapping. This is a major advantage of this
modeling perspective that has been almost totally ne-
glected in the previous traditions of block modeling and
network-based role analysis. This limitation in prior per-
spectives has prevented block modeling from modeling the
fact that actors do not usually take on a single role but
an intersection of roles. The proposed framework can help
to recover some of these intersections through the over-
lapping partitions that occur with different granularities
of roles.

What density generalized block modeling contributes
are new measurement, structural, and potentially dynamic
perspectives on problems of explanation, assuming that
models are constructed as time series of how networks
evolve.

We’d like to thank Jeroen Bruggeman and Scott White for
useful discussions and David Smith and Matthew Mahutga also
for sharing the UN comtrade data with us.
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11. G. Palla, I. Derény, I. Farkas, T. Viscek, Nature 435, 814

(2005)
12. J. Reichardt, S. Bornholdt, J. Stat. Mech., P06016 (2007)
13. F. Lorrain, H.C. White, J. Math. Sociol. 1, 49 (1971)
14. D.R. White, K.P. Reitz, Soc. Netw. 5, 193 (1983)
15. M.G. Everett, S.P. Borgatti, J. Math. Sociol. 19, 29 (1994)
16. P. Doreian, V. Batagelj, A. Ferligoj, Generalized

Blockmodeling (Cambridge University Press, New York,
2005)

17. M.E.J. Newman, M. Girvan, Phys. Rev. E 69, 066133
(2004)

18. J. Reichardt, S. Bornholdt, Phys. Rev. Lett. 93, 218701
(2004)

19. J. Reichardt, S. Bornholdt, Phys. Rev. E 74, 016110 (2006)
20. P. Doreian, V. Batagelj, A. Ferligoj, Soc. Netw. 26, 29

(2004)
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